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Exact eigenstates of some spin-: Heisenberg chains with l/r2 
exchange 

P J Forresteft 
Department of Mathematics, La &be University, Bundoom, Victolia 3083, Australia 

Received 24 February 1992 

AbstracL A new derivation of the mac1 eigenstates and corresponding energy levels of 
some spin-: Heisenberg chains with I/r2 exchange found ty Haldane is given. This 
method is then applied to obtain some exact eigenslales and corresponding energy levels 
of a lwocomponent generalization of Haldane's spin system. 

1. Introduction 

Haldane [I, 21 has provided some exact eigenstates and corresponding eigenvalues 
for the one-dimensional spin-f Heisenberg chain with Hamiltonian 

(the case A = 1 has also been considered by Shastry [3]; see [4] for a discussion of 
related Hamiltonians). The system represented by this Hamiltonian can be thought of 
as having spins at N equally spaced lattice sites on a circle of circumference length 
N, with an exchange interaction proportional to the inverse square of the chord 
length. 

There is a striking correspondence between the eigenstates of the Hamiltonian 
(1.1) found in [l] and [Z] and the eigenfunctions of the continuous Schrodinger 
operator 

Explicitly, foi 

A = '  4 9 -  - ' m ( m - l )  2 (1.3) 

where m denotes an even positive integer, exact eigenstates of (1.1) can be obtained 
from exact wavefunctions of (1.2) by simply replacing the continuous variables zk 
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by the corresponding lattice site labels nL. In [l] this fact was exhibited by explicit 
verification (as it is in (31, in the special case A = 1). 

An alternative approach to explicit verification for revealing the correspondence 
between the quantum lattice Hamiltonians and continuous Schriidinger operators has 
been observed by Sutherland [SI. He pointed out that, under certain conditions, the 
Fourier transform of the kinetic energy operator and the discrete Fourier transform 
of the hopping operator are equal. 

lVi+h 11-1 - 1 1 -  I A T \  +hn fr\r-nr n..nmrih. ir rlnfi-orl no 
..1L'. .yid,/ - y\u T '1 , L.L" L Y . I I . I .  y"".'L'L, Y YI...IIU - 

which equals 

while the latter quantity is defined as 

which equals 

(1.56) 

where V(j)  is the weight of a step of j units, and we assume V ( j )  = V ( j  + N). 
In both ( 1 . k )  and ( lSa) ,  for comparison with the results of [l], we have used - k  
instead of the usual k in the definitions of the transforms. 

For integer k ,  0 < k < N - 1, equality between (1.4) and (1.5) can be achieved 
by choosing 

and requiring that 

The equation (1.7) is valid if the Fourier expansion of the eigenstate is restricted to 
a Brijiouiii tiiai 

N-1 

+(I) = cpeZ*'"PIN. (1.8) 
p=0 
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Sutherland [5] intimated that the correspondence between the Hamiltonians (1) 
and (2) could be exhibited in a similar way, but no details were given. In section 2 of 
this paper the details of the required calculation will be provided, thus giving a new 
derivation of the class of eigenstates and corresponding eigenvalues given in [l-31. 
The method will then be applied to the derivation of some exact eigenstate of a 
two-component spin-4 Heisenberg chain with I/? exchange, via its correspondence 
with a solvable two-component Schrijdinger operator. 

2. Derivation of the exact eigenstates 

2.1. Correspondence between the Heisenberg chain and the Bose lattice gos 

7h use the wavefunctions of the Schrodiner operatnr (1.2) tn derive eigenstates of 
the Heisenberg chain Hamiltonian (l.l), it is first necessary to rewrite the latter as 
the Hamiltonian for a ‘hard-core’ Bose Iattice gas. By writing the Pauli spin operators 
in t e m  of the raising and lowering operators: 

s; = (O: + O j ) / 2  s? I = ( O f  - O .  l ) / 2 i  Sz I = ( a + a . -  J I f )  (2.1) 

the Hamiltonian (1.1) reads 

~ ( n  - n ’ ) [ $ ( a , a , ,  + + a , , a , )  + Aaia ,a: ,a , , , ]  + $ A ~ ( - M  + f i v )  
l (n  <n‘<N 

t 2 . w  

where 

and 

N 
C a t a j  
j=1 

hy its eigenvalue M ;  0 -< M -< N .  This is possible since the operator (2.3) commutes 
with the Hamiltonian (227). a fact which can be checked by using the relations 

[ a j , a k ]  = [ a T , a : ]  = [ a j , a : ]  = 0 

a: = (a+ ) ’  I = o { o ~ , o ~ )  = I .  (2.4) 

j # k (2.W 
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The commutation relations (2.4a) are those of a Bose lattice gas, while the relations 
(2.4b) express the ‘hard core’ condition that two particles cannot occupy the same 
site. The operator (2.3) counts the total number of up spins in the zdirection for the 
Heisenberg chain, while for the Bose lattice gas this operator gives the total number 
of particles. 

The advantage of the representation (2.27) is that it enables the eigenvalue prob- 
lem for the eigenstate +(el, . . . ,!,)(e, denotes the coordinate of the j t h  particle) 
with M- parricies as a diiference equation. We have 

where X denotes the energy eigenvalue. 

2.2. Exact wavefinctions of the I /r2 many-body Schradinger operator 

We want to relate the solutions of the difference equation (2.5) to the solution of the 
Schrodinger equation with Hamiltonian (1.2). It is convenient to first collect together 
some properties of the latter. 

Sutherland 161 has shown that the ground-state wavefunction of (1.2) is given by 
the BDJ pair product form 

+ o ( q , . . . r + M )  = n I s i n d q - - , ) / W ”  (2.6) 
1 6 j < k < M  

where the parameter m and the coupling g are related by 

g = 2m(m - 1) (2.7) 

(also, for stability, we require g 2 -!j). The excited states are given by [7] 

+o(~~,...,~M)6(+~,...,~M) 

where 6 satisfies the eigenvalue equation 

= ( E  - Eo)+. (2.9) 
_ _  Here E denotes tne energy of the excited states and Eo denotes iiie giiXiiib-S:2:e 
energy, which is given explicitly by (61 

(2.10) 
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The solutions [7] of (2.9) are symmetric Laurent polynomials in the variables 

eZxizi/N e = 1,. . . , M .  (2.11) 

To each set of distinct integers 

there corresponds a Laurent polynomial which satisfies (2.9) and has greatest order, 
in the variables (2.11), pM, and least order p,. The corresponding energy eigenvalue 
is 

A further relevant feature of the solutions of (2.9) is that if we denote the wavefunc- 
uvii (LO) ~ O ~ ~ c a p u ~ i u ~ i g  LU LIIC inrcgcn (LIL) ~y .:-- I* 0, - __^^___..:__ .̂  &L^ , - ̂ ^^_^ r,, .-\ L - ~  

then 

Our method of establishing the relationship between the difference equation (2.5) 

of the form (1.7). This in turn relies on the Fourier expansion of the wavefunction 
(2.8) having components entirely within a single Brillouin zone, so that 

and the SGkitkXj Of the Sihi$diii&ei i i p 2 t h i i  Wkh H2m;tGiikii (1.2; 'KG 6% kkiiiiiy 

(2.16) 

From (2.6) and the comment between (2.12) and (2.13), this is the case if and only if 
m is an even integer and 
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2.3. Solution of the discrete problem 

In following the procedure of Sutherland [5] given in the introduction, we first take 
the M-dimensional discrete Fourier transform (generalizing (1.50)) of both sides of 
the difference equation (2.5). Using the result in the appendix to evaluate 

we obtain 

and 

:= D F [ $ ( l l ,  ..., tM)] (2.196) 

:= D F [  V ( l k  -l;)$(tl, .  . .  , e , ) ]  (2.1%) 
l<j < k( M 

c = - ( - )  1 7 r 2  ( N z - l ) .  
3 N  

Here the discrete Fourier transform D F  is defined as 

(2.1%) 

(2.2oa) 

and each k, is an integer in the interval 

0 6 k j  6 N - 1. (2.2ob) 

The evaluation (2.1%) follows from the definition ( 2 2 )  and the result in the ap- 
pendix. We note that the equation (2.190) is equivalent to (2.5) in the sense that $ 
satisfies (2.5) if and only if 4 satisfies (2.19a). 

Now consider the wavefunction (2.15) with J = - M / 2 .  With each p j  an integer 
and N even the numbers p, - N / 2  are integers and (2.15) is periodic under the 
translation z, ct z, + N .  However if N is odd, (2.15) changes sign under this 
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mapping. Nonetheless, in both cases (2.15) satisfies the Schriidinger equation with 
Hamiltonian (1.2) and, from (2.13) and (2.18), energy eigenvalue 

j = l  
3 

(2.21) 

Analogous to (1.4), but taking special note that (2.1%) contains ( k j  - N / 2 ) 2  rather 
than k j ,  we take the Fourier transform of this Schriidinger equation with the Fourier 
variables k, replaced by k j  - N / 2 ,  j = 1,. . . , M. This gives 

where 

Suppose m is even and (2.17) holds so that the wavefunction in (2.22) bas a 
Fourier expansion of the form (2.16). Define the unknown eigenstate in (2.19) by 

* ( g l $ . . . $ t M ) =  ~ p , . . . p ~ ( ~ l , ~ ~ ~ ~ ~ M )  (2.24) 

where the right-hand side of (2.24) is the wavefunction (2.14) evaluated at the lattice 
coordinates of the particles. Then the discrete Fourier transform (2.19b) and the 

form (2.6) of $,,, if (2.14) has a Fourier expansion of the form (2.16), so too does the 
function in (2.22c), and, by (2.24), the function in (2.1%). Thus (2.1%) and (2.22) 
are also equal, so we see that (2.22~) and (2.19a) are identical equations, provided 

iciii~iiiio-s Fwuiiei tiaiisioiiii (2.2%) are Furihermure, due io ihe funciiomi 

A = L  4s- - L m ( m - l )  2 (2.25) 

and 

(2.26) 
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where E is given by (2.21) and c by (2.1%). Hence, under the conditions stated 
at the beginning of this paragraph, (2.24) gives a family of eigenstates of (1.1) with 
corresponding energy eigenvalue (2.26). This result is contained in [Z] for the special 
case A = 1. 

As a more explicit example, with p, = p, = ... = pM = J ,  the above results 
give that the function 

m 77 
~ ~ ~ ~ J E I I N  n (sin -(tk - e,)) (2.27) N 

k = 1  l < j < k < M  

is an eigenstate of (1.1) with A given by (2.25), provided m is even and 

0 6 - fm(M-  1) + J 

( N -  1) 2 f m ( M  - I ) +  J .  

The corresponding energy eigenvalue is 

1 2 

1 2  N 
--(z) M ( N 2 + 2 ) .  (2.29) 

These results agree with those given in [l] (and [3] in the special case A = 1, N 
even and J = Nf2) .  

3. Exact eigenstates for a two-component system 

3.1. Some related Hamiltonians 

The method used in the previous section to obtain exact eigenstates of the Bose 
lattice gas Hamiltonian (2.2a) from the Schmdinger operator (1.2) can be generalized 
to a two-component case. Krivnov and Ovchinnikov [SI have considered the two- 
component generalization of (1.2): 

where V is defined by ( 2 2 ) .  In this section we will use exact wavefunctions of (3.1) 
to obtain exact eigenstates of the twocomponent Bose lattice gas Hamiltonian 

v(e - @‘)[f(Q$Qf,  + Q:Q() + AllQ:QfQ:at,] 
l<t<f’<N 



The system represented by the Hamiltonian (3.2) can be considered to have a 
circle as its domain. Species 1 is confined to N lattice sites spaced by polar angles 
2 ? r / N ,  starting at angle 2 ? r d / N ,  while species 2 is confined to Q N  lattice sites 
spaced by polar angle 2 a / N Q  starting at angle 0. The number operators for each 
species, 

(3.3) 

commute with the Hamiltonian so we can consider a state with Ml,O < MI < N ,  
particles of species 1 and M2,  0 < M2 < Q N ,  particles of species 2. 

The eigenstates then depend on the coordinates e , ,  . . . , tM, of the particles of 
species 1 and the coordinates nl,. . . , nM, of the particles of species 2, so they can 
be denoted by 

$(eI?...,eMl;nl,.. . , " M , ) .  (3.4) 

From (3.2), analogously to (2.5), the eigenvalue equation for these eigenstates can be 
written as a difference equation. %king the discrete Fourier transform, the difference 
equation reads 

where 

(3.50) 

(3.56) 
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and the discrete Fourier transform operator is defined as 

with 

0 < kj < N - 1 0 < K j  6 QN - 1. (3.5e) 

3.2. h c t  wavefunctions of the two-component Schradinger operator 

K r h o v  and Ovchinnikov [SI have shown that for a certain choice of the couplings, 
the ground-state wavefunction of (3.1) is given by 

The required couplings are 

g1 = 2m(m - 1) 

and the corresponding ground state energy is 

g 2  = 2mQ(mQ2 - 1) 9 1 2  = m(1 + Q)(mQ - 1) (3.7) 

( 3 4  

Excited states of the Hamiltonian (3.1) were not discussed in [8]. They Can be 
investigated by seeking a trial solution of the Schrddinger equation of the form &?/l, 
which gives the eigenvalue equation 
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We have been unable to solve (3.9) in general. However, we obselve that 

is a solution with corresponding energy eigenvalue 

(3.10) 

(3.11) 

we are ab0 interested in the circumstance under which the Fourier expansion of 
GobJ, with y ,  replaced by y j / Q ,  j = 1,. . . , Mz, has wmponen& entirely within a 
single Bdlouin zone, so that 

N - 1  N - 1  Q N - 1  Q N - 1  M I  M2 

j 1 = 0  i,,=O kl=O k M 2 = Q  1=1 t'=l 

GO4J = . . . . . . a ,,,,, k M 2  n e z r i j @ l / N  n e2r i ' z ly< , /QN.  

(3.12) 

From (3.6), (2 .2)  and (3.10) this requires m , m Q  and m Q 2  to be even positive 
integers and 

0 b - $ m ( M ,  - 1) - $ m Q M Z  + J 

N -  12 $ m ( M , -  1) + $ m Q M a  f J 

(3.1%) 

(3.13b) 

for the variables x j  and 

0 < - $ n Q z ( M z  - 1) - i m Q M l  + JQ 

Q N  - 1 2 $ m Q 2 ( M 2  - 1 )  + ?jmQMl + J Q  

(3.13~) 

(3.13d) 

for the variables y j  . 

3.3. Eruct eigenstates for the twocomponent Bose lattice gas 

We seek an equation with structure identical to (3.57). TI obtain such an quation, 
consider the Schrijdinger equation with Hamiltonian (3.1), wavefunction 

@ J - N , 2 ( x l ? . .  .?xML;Ylr'..9YM$) :=$04J-N/2  (3.14) 

where Go is given by (3.6) and q5J by (3.10), and corresponding energy eigenvalue 
(3.11) (with J replaced by J - N / 2 ) ,  to be denoted E J v N l Z .  'hke the Fourier 
transform with the Fourier variables kj replaced by kj - N / 2 ,  j = 1, . . . , M , ,  
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and K j  replaced by Kj - N Q / Z , j  = 1,. . . ,Ma. After then changing variables 
y j  c y j / Q ,  j = 1,. . . , M2, this gives 

(3.15~) 

and the Fourier operator F is defined as 

Now suppose the conditions of the sentence after (3.12) hold so that the wave- 
function $J in (3.15) has a Fourier expansion of the form (3.12). and define the 
unknown eigenstate in (3.5) by 

@ ( e , ,  . . . , l ~ , ;  . . , n ~ ~ )  = @,(e ,  + ' $ 3 . .  . , e ~ ,  + 4; n l / Q , .  . . , ~ M , / Q ) *  

(3.16) 

inen, foiiowing the reasoning of the paragraph after (2:iTj, we conchae that the 
equations (3.1%) and (3.5~) are identical, with the further identifications 

All = A22 = 92214 A12 = 91214 (3.17a) 

- 

In summary, we have thus provided a family of exact eigenstates (3.16) and corre- 
sponding energies (3.17b) of the hvo-component Bose lattice gas Hamiltonian (3.2), 
when the couplings are related by (3.17a) and (3.7), the parameters m,mQ and 
m Q 2  are positive even integers, and the further restrictions (3.13) are obeyed. 
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3.4. ExacI eigemtates for a two-component Heirenberg chain with I / r Z  erchange 

Crucial to the mapping between the Heisenberg chain Hamiltonian (1.1) and the 
Bose lattice gas Hamiltonian (2 .2)  is the indistinguishability of each lattice site. This 
then allows the quantity 

(3.18) 

to be evaluated in terms of the eigenvalues of the operator (2.3). 

individual sublattices are not indistinguishable, so it is not possible to evaluate 
In general, this property is not true in the two-component case. Lattice sites on 

(3.19) 

in terms of the eigenvalues of the operators (3.3). The only exception is the case 

and q5 = 1 (3.20) 

when, as seen in figure 1, lattice sites on both sublattices are indistinguishable (the 
same is true of the case Q = i, 4 = $; this is equivalent to (3.20) with species 1 and 
species 2 interchanged). 

Q = 2  4 

Figure 1. The nuocomponent lattice Q = 2 and 
4 = $ for N = 4. One sublattice is marked by 
dashes and the other by crossCo. 

The special case (3.20) of the two-component Bose lattice gas Hamiltonian (3.2) 
can be mapped to a two-component Heisenberg chain Hamiltonian. After introducing 
the spin operators (2.1) (and a second species s:), s y ) ,  s:z) corresponding to the 
operators aj and a:) the Hamiltonian (3.2) assumes the form 

H t C  (3.21) 

where 

H =  V ( t - t ' ) ( S , Z S ~  t SiSi, t AllSfSft 
l < f < t ' < N  
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ZN-1 
1a2 V ( j / 2 )  = - (-) ( 4 N 2  - 1) 
3 N  C,, = 

j = 1  

N - 1  

c,, = V ( j  + a )  = 2T2. 
j = O  

(3.22) 

(3.2%) 

(3.23b) 

(3.2%) 

The summations (3.236) and (3.2%) follow from the identities given in the appendix. 

A,, = im(m - 1) (3.24) 

m is an even positive integer and the conditions (3.13) with Q = 2 are obeyed, then 
the function 

From the results of the above section we have that if 

Az2 = m(4m - 1)  AI, = fm(2m - 1) 

(3.25) 

is an eigenstate of (3.22) with energy 
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where C is given by (3.23) and MI and Mz are eigenvalues of the operators (3.3). 
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Appendix 

Here we will provide the evaluations of the summations 

and 

where IC is an integer within the range 0 < k 6 M - 1 and ,$ is any non-integer 
complex number. We note that S(k) can be deduced from S,(k,,$) via the formula 

lb evaluate S,(k, 4)  we note that 

Replacing the summation over p by a summation over p‘ + s M, 0 < p‘ < 00, 
0 < s < M - 1, allows the summation over p‘ to be performed. This procedure gives 

m-1 
i = -  4 se-2rirlm+4)/M 

S = O  
sin2 n(m + 4 ) / M  1 -.-’lib 

The summation in (A2) can now be done immediately to give 
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Thking the limit in (A3) then gives 

S(k) = 2 ( k -  M / 2 ) 2  - ( M 2 + 2 ) / 6 .  
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